
Wolf 14 September 2021

Getting Started With tmux
A terminal multiplexer

Agenda

• Why tmux

• tmux's architecture

• A little about configuration

• Some important commands (of the many)

• Servers, clients, sessions, windows, and panes

• The status line

• A little about automation

• Modes, copy, and paste

• Pair-programming

There are a lot of live demos in this presentation, unfortunately the first one doesn't happen until slide 14 because I have some background to cover first. At the end,
we'll use tmux to answer your "show me" questions: a live demo of whatever you want. And if I don't know how to do it, we'll figure it out together.

You are going to want a copy of the slide-deck. For long lists of things like pane tokens and the like, I'm not going to go into depth or just read the list. So if you want to
go over them, get the deck.

man tmux

...and the most important thing I can teach you! It's the most complete, accurate, and up-to-date reference for tmux.

Who Am I?

• Wolf

• Long-time software engineer

• I've been using tmux for at least five years, not really sure

• I wouldn't call myself a tmux expert, rather I continue to be a student of tmux. This
means there will be questions to which I don't know the answer

• I'm a strong fan of automation. That colors this presentation. It's one of the reasons
why I use tmux instead of Gnu screen

• I have no problem with Emacs; but I also have almost no knowledge of Emacs. Vim
is typically my editor of choice.That also colors this presentation

For those on YouTube, yes Wolf is my entire name.

Don't let my particular choice of editors stop you from checking out tmux. It's great for any editor.

Note: I'm typing on a crazy new keyboard layout that may slow me down a bit. I love my keyboard but I'm still adapting to my new layout.

tmux Background

What Is tmux?
And why do I need it?

• tmux is a terminal multiplexer, that is

• It, itself, runs in a terminal

• It manages multiple sub-terminals within itself (yes, like Gnu screen)

• You use it to

• Protect running programs on remote servers from disconnects

• Allow remote programs to be accessed by different local computers, even simultaneously

• Bring programs and shells together into a single workspace, something like an IDE or a
window manager

• Facilitate pair-programming

Where Did tmux Come From?

• Created by Nicholas Marriott starting in 2007

• A heavy Gnu screen user at the time

• Who wanted something better. He felt

• Gnu screen had a lot of baggage

• Poor docs

• Strange configuration; and an

• Unintuitive command-line

How Is tmux Better Than Gnu screen?

• tmux is truly client/server. Gnu screen just emulates this

• tmux supports both Emacs and Vim key-bindings

• tmux has much better scripting support

• Window/pane splitting in tmux is more advanced (and lives through detaching/reattaching)

• tmux provides automatic window renaming

• tmux has a much richer set of commands and options

• tmux has better Unicode handling

• tmux is under active development: 6 month release cycle

Can Gnu screen Do Things tmux Can't?

• Gnu screen can directly make serial connections, which these days you
might use to connect to your microcontroller board, e.g., an Adafruit Circuit
Playground Express; however, you could just use cu for this, also by Nicholas
Marriott. You can even run cu from within tmux

• Gnu screen has a single server per session. If you use multiple sessions and
server stability has been a problem for you, this added isolation might be
helpful

• But the bottom line is that tmux and Gnu screen are, very roughly, parallel in
major features

Why you would use a terminal-multiplexer to do serial communication instead of using it to multiplex terminals is a mystery to me.

Gnu screen is considered by many to be “done”. That’s why it’s not really under active development. Pros of this are that maybe screen has fewer bugs. Cons are
that while tmux got to learn what works and what doesn't for screen, screen didn't get to learn anything from tmux.

Why tmux Instead Of Just My GUI Terminal?
…I already have windows, tabs, splits, and a working mouse

• See the four points of my earlier slide:

• Protect running programs on remote servers from disconnects

• Allow remote programs to be accessed by different local computers, even simultaneously

• Bring programs and shells together into a single workspace, something like an IDE or a window manager

• Facilitate pair-programming

• Plus you're usually running tmux remotely over ssh

• tmux has better scripting than your GUI terminal

• You're faster when you keep your hands on the keyboard (at least that's what they tell me)

• …and you're not giving up your GUI. You're running tmux inside it

Availability & Installation

• An OpenBSD project, but the portable version is available for pretty much all
Linuxes, Unixes, macOS, and Windows

• Install

• With your favorite package manager

• Build from source

• Download a binary

• https://blog.pjsen.eu/?p=440 explains how to install in Git Bash for
Windows

https://blog.pjsen.eu/?p=440

To Mouse Or Not To Mouse

• tmux is specifically designed to do everything without the mouse

• …but it supports the mouse for those who want it

• In my experience, the best use of the mouse is fine-grained pane-resizing

You can turn mouse support on and off in tmux with set-option -g mouse [on | off]. The mouse works in Vim inside tmux either way, but scrolling with the
scroll-wheel in less (e.g., for man tmux) only works with the mouse turned off.

tmux In Action

Live Demo

• Open a terminal and ssh into a server

• new-session (now we're running tmux on the server)

• Run top

• Split the window using a shortcut

• Split the window again using split-window at the command prompt

• Close the outer, local, terminal (simulating disconnect)

• Open a new terminal and reconnect

• list-sessions

• attach-session to the correct one, see top is still running

Note: a tmux server (and therefor, your sessions) will not survive a reboot. There is a plugin that helps with that, but obviously there's only so much it can do.

A Little About Commands

• Command names are pretty descriptive, but they all have shorter forms; and
any unique string of starting characters can be used

• Commands can be used:

• From any terminal, outside or inside tmux (we'll learn more about targeting
existing sessions, windows, and panes a little later)

• At tmux's internal command-prompt

• Within tmux configuration files and scripts

• Here are the commands we used:

new-session

• -s lets you provide a name for the new session; otherwise it just gets an
automatically-assigned number

• -n lets you name the initial window in the session

• You are attached to the session immediately unless you specified -d (d for
detached, daemon, or “don’t select” maybe?)

• If used from tmux's command prompt, switches to the new session (does not
nest, although tmux can be made to nest if that's what you want)

split-window

• Abbreviations: split or splitw. Alias: split-pane or splitp

• I disagree with the name. It targets (with -t) and operates on panes

• -v arranges the two resulting panes one above the other (shortcut: prefix ")

• -h side-by-side (shortcut: prefix %)

• Note this is the opposite of Vim, and I'm starting to appreciate it; but the shortcuts
are terrible. We'll give it better shortcuts ahead

• Also read: https://gist.github.com/sdondley/b01cc5bb1169c8c83401e438a652b84e.
Super Guide to the split-window tmux Subcommand (and Beyond)

The directionality of “vertical” and “horizontal” for split-window are confusing to some people, but they are not going to change. See https://github.com/tmux/tmux/
issues/213. You'll get used to it.

https://gist.github.com/sdondley/b01cc5bb1169c8c83401e438a652b84e

list-sessions

• Most-used abbreviation: ls

• From inside tmux, consider the alternative choose-session

attach-session

• Abbreviation: attach

• -t targets a specific session, else the last active session that is not currently
attached to any client is chosen

• If used from tmux's command prompt, switches to the targeted session.
Does not try to nest

• But if you are inside tmux, again, consider the alternative choose-session

The Architecture Of tmux

Thanks to Jim McQuillan for this diagram!

Servers

• A server owns one or more sessions

• If all the sessions quit, the server quits

• If the server is killed, all its sessions are killed

• A server communicates with clients over a socket. A server listens for client
connections on exactly one socket. If you use a different socket, you get a
different server

Clients

• A client is running in a terminal app such as xterm, iTerm2, or even a pane in
tmux itself (if you’re running nested tmux sessions)

• A client is connected to exactly one session

• If the client is killed, the session is detached and goes on living in the
background

• If the session is detached or killed, the client is killed

• Some commands take a -t target-client option. Clients are named for their
underlying device, e.g. (on my system), /dev/ttys005, /dev/ttys009, or
just ttys006. Names on your system will vary.

You can see client names by saying choose-client or list-clients

Sessions

• Sessions are the entry-point into tmux. You start your tmux day with new-
session, attach-session, and/or list-sessions

• A session manages one or more windows

• It is attached to zero or more clients

• It belongs to exactly one server and cannot be moved to a different server

• If you start a session and no server is running, a server will be created

Windows

• A window contains one or more panes

• Windows show up in the tmux status line as "tabs"

• When the last pane in a window is closed, the window closes

• If a window is killed, all the panes in it are killed

• A window is linked into one or more sessions

• A window can be moved between sessions

Panes

• A pane is a single virtual terminal

• It belongs to exactly one window

• Inside a pane is where your actual work happens

In Gnu screen, what tmux calls a pane is a "region".

A Quick Look At Configuration

~/.tmux.conf

• Only read on server creation

• A different configuration file can be selected by using the -f option when the server
is started

• Options can be updated in a running server using the source-file command.
Rereading the config only overwrites existing options and adds new. It doesn’t
magically reset anything back to original defaults

• The two most-used commands in the configuration file:

• set-option

• bind-key

The Prefix Key

• Starts almost all tmux shortcuts, hence the name “the prefix key”

• Lets tmux know the next key is meant for tmux itself, not the app in the active pane

• Defaults to Control-b. Abbreviated C-b

• Can be changed in .tmux.conf. Many people use C-a instead, because that’s
what Gnu screen uses (and it’s easier to reach)

• Hit twice to send it past tmux and into the app in the current pane

• Can be changed live at tmux’s command-prompt in case you are running nested
tmux instances and don’t want to get confused

tmux’s Command Prompt

• Prefix :

• Execute any tmux command

• Uses Emacs-like key-bindings unless your $EDITOR contains the string "vi"
or you explicitly set the status-keys option

• Get out of it by either executing a command, or executing an empty
command with Return. With Emacs bindings, Escape. With Vi bindings,
Escape to get into Vi "normal" mode, then q

Live Demo

• Splitting the window from the command-prompt

• Changing the prefix in .tmux.conf

• Sourcing the config

• Auto-complete at the command-prompt (by starting with cho)

set-option

• Abbreviation: set

• Options are set on the server, session, window, pane, or else "globally" from which
they are inherited. For most options, tmux knows where to set it; but you can
specify in the call to set-option

• -a lets you append text to an already set option

• Opposite: unset-option

• Show an (or all) option(s): show-options

• Interactively view and change options: customize-mode (shortcut: prefix C). This
will also show you where an option belongs: server, session, window, or pane

The customize-mode command puts you into the options-mode mode. I know. That's weird. But also, I love options-mode. It's great for exploring.

bind-key

• Abbreviation: bind

• Opposite: unbind-key

• Show a (or all) key bindings: list-keys

• Use prefix ? to show the current key bindings

No I'm not going to talk about key tables today. They're a more advanced topic and out-of-scope for this talk.

13 Commands: 90% of the Work

Some Important Commands
A few for outside of tmux. A few for inside.

Shortcut Action Actual Command
Create a new session, window, & pane new-session -s name

List existing sessions list-sessions
Attach to existing session attach-session -t name

prefix ? List key bindings list-keys -N
prefix d Detach the current client detach-client
prefix c Create a new window in this session new-window
prefix n Move to the next window next-window
prefix “ Split the current pane “vertically" split-window -v
prefix % Split the current pane “horizontally” split-window -h
prefix o Move to the next pane select-pane -t :.+
prefix [Enter copy mode copy-mode
prefix] Paste the most recent buffer paste-buffer -p
prefix : Enter the command-prompt command-prompt

Just knowing these commands is enough to get around tmux like a pro.

Sessions In Depth

Targeting A Session

• Every session has a unique (server-wide) unchanging session ID. If you ever
have to use it, it is prefixed with $, e.g., $0

• If you didn’t supply a name when you created a session, it automatically gets
a number for its name. Don’t confuse this with its ID

• Several commands take a -t target-session. You can supply a session ID, a
session name, or a pattern to be matched against the session name (in that
order of preference)

Unlike with clients, neither list-sessions nor choose-session display the session ids. If you want to see one, you need to say display-message
"#{session_id}".

Some Session-Specific Commands

• attach-session

• has-session

• kill-session

• list-sessions

• choose-session

• lock-session

• new-session

• rename-session

This is not all of them. Consult man tmux.

Some Session Details

• A session may be connected to more than one client at a time; but every
client shows the same active window (there’s a way around this. I’ll show you
in the next slide)

Session Groups

• Why: you want multiple clients to work on the same windows/panes, but independently. You don’t
want them to share the same active window as they would if they were working on the same
session

• What: a session group is a collection of sessions all of which contain the same windows and
panes, but each of which has its own active window and active pane (and session ID, and session
name)

• How: new-session -t group-name. You can supply the name of a new group; an existing group;
or a session name, in which case you’ll add your new session to the named session’s group. If the
named session has no group, a new one will be created, named after that session

• But: it’s not magic. No matter how many sessions contain a pane, there’s only one process in that
pane, e.g., if you’re running Vim in that pane, you won’t have two different cursors. Sessions in a
group can have different active windows, but if they have same active window, they will have the
same active pane.

Sorry for the wall of text. This slide will be more useful to you when you have the slide-deck in your hands and are going over it slide-by-slide.

Windows In Depth

Targeting A Window

• Every window has a unique (server-wide) unchanging window ID. If you ever have to use it, it
is prefixed by an @, e.g., @1

• Every window has an index within its session. That index can change if you reorder the
windows. Window indexes start at 0 unless you specifically set the base-index option

• Several commands take a -t target-window. You can supply a special token (more on this
ahead); an index; a window ID; an exact window name; or a pattern to match against the
window name (in that order of preference)

• When targeting a window, you can start with the session if needed, and separate with a :,
e.g. mysession:@2, $6:Editor, :bash

• If you didn’t supply a name for the window, it will be dynamically assigned based on what’s
currently running in its active pane. That’s the window’s “title” by the way

You can see the window-id with list-windows. Unfortunately, choose-window doesn't show it.

Tokens Identifying Windows

• {start} or ^

• {end} or $

• {last} or !

• {next} or +

• {previous} or -

Some Window-Specific Commands

• new-window

• rename-window

• select-window

• swap-window

• move-window

• link-window

• kill-window

• find-window

• list-windows

• choose-window

There are plenty more. Again, consult man tmux.

Some Window Details

• A window may be linked into more than one session at a time. In fact, that’s
how session groups work

• A window may be moved from one session to another

• A window always contains at least one pane

• A window with multiple panes can cycle through some preset layouts

Live Demo By Special Request
Moving a window from one session to another

• Go to the iTerm window already showing two different sessions side-by-side

• Explain that this is an iTerm split, not a tmux split, and why: clients only show
one session at a time and I needed two clients here

• Show the windows in the left session. Have only one window in the right
session

• Use move-window from the tmux command-prompt

• Dissect the result

Panes In Depth

Targeting A Pane

• Every pane has a unique (server-wide) unchanging pane ID. If you ever have to use
it, it is prefixed by a %, e.g., %9

• Every pane has an index within its window. That index changes as you reorder the
panes. The lowest index is the top left. The highest index is the bottom right. Pane
indexes start at 0 unless you specifically set pane-base-index option

• Several commands take a -t target-pane. You can supply a special token (more
ahead); an index; or a pane ID

• When targeting a pane, you can start with the session and/or window if needed, and
separate from them with a ., e.g. mysession:@2.%2, or $6:Editor.!, :.+

• Panes don’t have names, but they do have "titles"

Tokens Identifying Panes

• {last} or !

• {next} or + (can take an argument)

• {previous} or - (can take an
argument)

• {top}

• {bottom}

• {left}

• {right}

• {top-left}

• {top-right}

• {bottom-left}

• {bottom-right}

• {up-of}

• {down-of}

• {left-of}

• {right-of}

Go back to slide 35 for a moment to analyze the command to go to the next pane.

Some Pane-Specific Commands

• split-window (also known as split-pane)

• join-pane

• list-panes

• capture-pane

• pipe-pane

• swap-pane

• resize-pane (especially with -Z for zoom)

There are plenty more.

Some Pane Details

• A pane is normally just a terminal. Sometimes, though, it will be in a special
“mode”: copy-mode; buffer-mode; view-mode; client-mode; tree-mode; or
option-mode

• You can see the pane indexes with prefix q

• Panes may be "zoomed" (try prefix z to toggle)

• Panes may be moved from one window to another, even creating a new
window in the process

The Status Line

Let’s Play With The Status Line

• The status line comprises three parts: stuff on the left, the window list in the
middle, and stuff on the right

• Controlled by the options status-left and status-right

• You can run code to produce text in the status bar by enclosing it in #(), for
example: #(uptime)

• There are options to control the maximum length of the left and right sides,
the styles of all three parts, the refresh interval, whether the status line is at
the top or bottom, and many more

Formats And Format Variables

• Formats are tmux's (rather minimal) templating language

• Formats are typically given to commands with the -F flag

• They are surrounded by double quotes (don't omit them!)

• They are built from format variables and options surrounded by #{}.

• For instance, here's a call to list-windows with a format: 
 
 tmux list-windows -F "#{window_id} #{window_name}"

Let's give that command a try.

Some Conditional Configuration

• "#{?variable,string1,string2}" produces string1 if variable is, for example 
 
 "#{?automatic-rename,yes,no}"

• conditionals with "#{operator:string1,string2}", for example (from my config) 
 
 %if "#{==:#{host},ubuntu}" ...

• conditionals with the if-shell command, for example 
 
 if-shell "[[$(name) == Darwin]]" ...

Let's take another look at my configuration to see examples.

Modes

What Is A tmux Mode?

• Normally, in tmux, your keystrokes are all going into the app running in the active pane, be it a shell, an
editor, a utility, whatever. When that pane is in one of tmux’s modes, though, your keystrokes are all
going into tmux itself to control whatever tmux thing is happening in that pane.

• Various pane modes (at least according to the widget I added to my status bar):

• copy-mode

• buffer-mode

• view-mode

• client-mode

• tree-mode

• options-mode

Live Demo

• Use list-keys to get into view-mode; navigate around

• Use choose-tree to get into tree-mode; navigate around

• Use customize-mode to get into options-mode; navigate around and set
some options

More about copy and buffer mode later

Copy & Paste

Your Favorite Key-Bindings

• Unlike other modes, copy-mode key bindings are under your control

• Emacs-like bindings is the default unless the value of $EDITOR contains the
string "vi"

• You can explicitly control it by setting the mode-keys option

Note that all key-bindings are under your control when you're not in a mode.

Copy Mode

• Get into copy mode with prefix [

• You know you're in copy mode because of the number/number widget in the upper
right-hand corner of the pane

• Maneuver around with the key bindings you've chosen

• Scrolling all the way to the bottom generally takes you out of copy mode

• Start selecting text with Space (Vi) or C-Space (Emacs)

• Copy the selected text with Enter (Vi) or M-w (Emacs)

• Go to the session, window, and pane where you want to paste and hit prefix]

Consult man tmux for all the keys.

Live demo.

Buffer Mode

• Copying adds another buffer to the stack

• Executing the command choose-buffer, or using prefix = puts you into
buffer mode, where you select any of the previously copied buffers to be
pasted into the current pane

Live demo.

Scripting

The Good (But Short) News

• Because tmux commands can be run from the shell and target any session,
window, or pane, this is just shell scripting

• Everything you know and love about your favorite shell applies

tmuxinator

What Is tmuxinator?

• It’s a wrapper for tmux that helps you easily build complicated setups:
automatically creating the windows, splitting the panes, and starting the
programs to assemble your development environment

• Install with your package manager, or as a ruby gem

• Where scripting is imperative, tmuxinator is declarative

• Uses YAML files

Live Demo

• Edit mug-demo.yml; talk about the pieces

• Start, stop, and restart mug-demo

• Detach and restart

• Debug

• List

• Edit a more complicated project: mug-angular.yml

• Start mug-angular

Sharing & Pairing

My Favorite Technique

• On the machine you will be sharing:

• Make a special group for this, e.g., named tmux-sharing

• Make a special directory, owned by that group and read/write for anyone in the group, for sharing
the underlying socket, e.g., /var/tmux-sharing

• Have accounts for the users who will be sharing, e.g., wolf and jam, and make them members of
the group

• The users log in to the shared box, and

• The first one, here wolf, creates a new server, session, and session group by saying: 
tmux -S /var/tmux-sharing/wolf-jam new-session -s wolf -t wolf-jam-sharing

• The second one, here jam, creates a new session in that same session group by saying: 
tmux -S /var/tmux-sharing/wolf-jam new-session -s jam -t wolf-jam-sharing

Live Demo

• Attach to our already running the demo with: 
tmux -S /var/tmux-sharing/wolf-jam attach-session -t wolf

• Have Jim attach from his machine: 
tmux -S /var/tmux-sharing/wolf-jam attach-session -t jam

• Be typing in the window

• …while Jim creates a second window, launches Vim, and starts typing there

• Point out when the window tab appears

• When Jim says he’s got content, switch over to Jim’s window

Okay, for time's sake, these aren't exactly the commands we're using. We're just demonstrating simple sharing of a single session, not a session group.

Conclusions

What We Covered

• What tmux is good for

• The architecture of tmux

• Configuration

• Common commands

• Servers, clients, sessions, windows, and panes

• The status line

• A little automation

• Modes, copy, and paste

• Pair-programming

Where To Go From Here
Things I didn’t talk about

• Plugins

• Automatic window renaming

• Linking one window to multiple sessions

• Hooks

• Only briefly touched on "formats"

• Pop-ups and pop-up menus

• "Control mode" and -CC

• Command parsing vs. execution

• Key tables, and for instance using them to support multi-key commands; or your own prefix key specifically
for a subset of your favorite commands

Books And Links

• The tmux repo: https://github.com/tmux/tmux/

• man tmux (absolutely the most complete and up-to-date reference)

• The tmux wiki: https://github.com/tmux/tmux/wiki

• "Tmux 2: Productive Mouse-Free Development" (get the 2018 update)

• "The Tao of tmux: and Terminal Tricks"

• PJSen Blog: How to run Tmux in GIT Bash on Windows https://blog.pjsen.eu/?p=440

• My .tmux.conf: https://github.com/wolf/dotfiles/blob/main/tmux/.tmux.conf

• Super Guide to the split-window tmux Subcommand (and Beyond) 
https://gist.github.com/sdondley/b01cc5bb1169c8c83401e438a652b84e.

https://github.com/tmux/tmux/
https://github.com/tmux/tmux/wiki
https://blog.pjsen.eu/?p=440
https://github.com/wolf/dotfiles/blob/main/tmux/.tmux.conf
https://gist.github.com/sdondley/b01cc5bb1169c8c83401e438a652b84e

Colophon
You probably don’t want to know this but I always get asked

• I’m doing this presentation on a Mac and connecting to an Ubuntu server

• I’m using the open source tool KeyCastr to show on-screen what keys I’m hitting

• Locally, I’m using tmux version next-3.3 and tmuxinator 3.0.1, both installed by Homebrew

• On my server I’m running Ubuntu 20.04.3, and tmux 3.0a as installed by apt

• I am starting with my existing tmux config, which we will dissect during the presentation

• I’m giving this presentation in Apple’s Keynote application; but I’m providing the slides (with presenter’s notes) as a
PDF

• My terminal app is iTerm2.

• iTerm2 is using the open source font JetBrains Mono; these slides use Andale Mono to distinguish terminal
commands

• For the pair-programming demo, Jim is connecting to the Ubuntu server from Canada through his MacBook Air

